NVG Meeting 2019

Annual NVG meeting 2019 and PhD WORKSHOP
In Groningen
Wednesday 27 November  – Friday 29 November 

The 2019 NVG meeting will be held from Wednesday November 27th to Friday November 29th in Groningen, The Netherlands. This year will be a special edition, as we have decided to team up with the Dutch (KNDV) and Belgian (BZS) Zoologist. 

Our own NVG meeting starts on Wednesday evening 18:00h, after the PhD workshop and will continue Thursday morning. After lunch we kick-off the joint NVG-Zoology meeting with our Barends lecture. In the afternoon there will be 3 parallel sessions, of which one will be fully dedicated to behaviour. In the evening their will be a public lecture from Richard Morris (from the Morris maze) organised by the KNDV. On Friday there will be two keynote speakers from Zoology, plus an other round of parallel sessions.

We will keep you update on this webpage and via https://zoology2019.com/

Both plenary speakers, Susanne Åkesson and Jolle Jolles are confirmed. See below for the title of their talks and a short biosketch.

Susanne Åkesson

Long-distance navigation in birds: lessons learned from cage experiments and individual tracking

Susanne Åkesson, Department of Biology, Center for Animal Movement Research, Lund University, Sweden,  https://www.biology.lu.se/susanne-akesson

Abstract

Spectacular long-distance migration has evolved repeatedly in animals enabling individuals to explore resources separated in time and space on a global scale. Young solo-migrating avian migrants rely on an endogenous migration program, encoding time, distance and direction of migration to reach their non-breeding sites of residency. To select an inherited migration direction during migration birds may rely on information from three different biological compasses, based on the sun, stars and the geomagnetic field. Birds may cover several thousands of kilometers on one seasonal migration path, but still the compass mechanism used during migration flights is not yet completely understood. How birds explore the geomagnetic field for compass orientation and navigation during long migrations, and how they may use magnetic information to detect their position in space is something I have explored by experiments and individual tracking. In this lecture, I will present my recent work and discuss some of the open questions that still needs to be addressed in order to understand the adaptations to long-distance migration in birds.

Bio

In my current research, I study movement ecology and especially the phenotypic characteristics of the endogenous migration program in birds, and how animals have adapted to cope with long migrations. Part of this work is dedicated to study the migration phenotype of young birds, and especially the variation and functional characteristics of the endogenous migration program guiding solo-migrating birds on their first migration. I am interested in how different internal and external factors may lead to variation between individuals and species in how the program is expressed. I also have a strong interest in research questions connecting biology and physics, more precisely in sensory ecology, involving studies of how animals use skylight polarization and the earth’s magnetic field for orientation. Some of these studies have been performed during expeditions in the high Arctic. I find common swifts (Apus apus) and their mobile lifestyle most fascinating and I study their non-breeding movements in a continental-wide tracking project since 2009, including populations from different parts of the European and Asian breeding range. I am currently a professor in animal ecology at Lund University and a director of the Center for Animal Movement Research (CAnMove) at Lund University. I am a fellow of the Royal Institute for Navigation in London, a fellow of the Royal Physiographical Society in Lund and a Fellow of the Royal Academy of Sciences in Stockholm.

Jolle Jolles

The role of individual heterogeneity in the collective behaviour of animal groups

Abstract

Sociality plays a fundamental role in the lives of most animals. An essential goal in biology is therefore to establish how collective behaviour emerges, and how animal social systems form and function. There exists considerable variation among individuals within animal groups and communities across a broad range of levels. Such individual heterogeneity may play a fundamental role in how animals behave and interact within animal collectives, and thereby could affect and drive their structure, collective dynamics, and functioning. My research is focused on unravelling this role of individual heterogeneity in collective behaviour and predict their consequences across social scales. In my work I combine the strong mechanistic approach of Collective Behaviour Research with fundamental concepts from Behavioural Ecology to unravel the link between phenotypic variation, the emergence of collective properties and group functioning, and in turn individual fitness and between-group dynamics. In my talk I will discuss my recent experimental and modelling work and present a unified framework I have been developing for the study of individual heterogeneity in animal groups.

Bio

Fascinated how individual animals live and move together in groups, my long-term research goal is to better understand the role individuals play in animal social systems and how phenotypic variation may arise and persist in animal groups. I was born and raised in the Netherlands, and got my Bachelors in Biology at the University of Groningen, and my Masters in Neuroscience and Cognition at the University of Utrecht. I then moved to the UK where I did my PhD at the University of Cambridge. With my doctorate work I showed that individual differences in boldness and sociability play an important role in collective behaviour and drive the spatial positioning, leadership, social dynamics, and group performance of schooling sticklebacks. I then moved to the Collective Behaviour Department at the Max Planck Institute of Ornithology, Konstanz, first as a postdoc and currently as an independent postdoctoral research fellow, where I have been pushing a mechanistic approach for the study of animal behaviour, combining controlled laboratory experiments, field observations, and computers simulations, and build my own fish lab. Recently I have been focused on developing a unified, interdisciplinary framework to help properly explain and predict the role of individual differences in collective behaviour and their consequences across social and ecological scales.